Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
PLoS Pathog ; 18(2): e1010339, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157735

RESUMEN

Adoptive T-cell immunotherapy has provided promising results in the treatment of viral complications in humans, particularly in the context of immunocompromised patients who have exhausted all other clinical options. The capacity to expand T cells from healthy immune individuals is providing a new approach to anti-viral immunotherapy, offering rapid off-the-shelf treatment with tailor-made human leukocyte antigen (HLA)-matched T cells. While most of this research has focused on the treatment of latent viral infections, emerging evidence that SARS-CoV-2-specific T cells play an important role in protection against COVID-19 suggests that the transfer of HLA-matched allogeneic off-the-shelf virus-specific T cells could provide a treatment option for patients with active COVID-19 or at risk of developing COVID-19. We initially screened 60 convalescent individuals and based on HLA typing and T-cell response profile, 12 individuals were selected for the development of a SARS-CoV-2-specific T-cell bank. We demonstrate that these T cells are specific for up to four SARS-CoV-2 antigens presented by a broad range of both HLA class I and class II alleles. These T cells show consistent functional and phenotypic properties, display cytotoxic potential against HLA-matched targets and can recognize HLA-matched cells infected with different SARS-CoV-2 variants. These observations demonstrate a robust approach for the production of SARS-CoV-2-specific T cells and provide the impetus for the development of a T-cell repository for clinical assessment.


Asunto(s)
Antígenos HLA/inmunología , Inmunoterapia Adoptiva , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Epítopos de Linfocito T , Femenino , Células HEK293 , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359683

RESUMEN

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

4.
Clin Transl Immunology ; 10(8): e1326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408875

RESUMEN

OBJECTIVES: With the ongoing emergence of SARS-CoV-2 variants and potential to evade vaccine-induced neutralisation, understanding the magnitude and breadth of vaccine-induced T-cell immunity will be critical for the ongoing optimisation of vaccine approaches. Strategies that provide a rapid and easily translatable means of assessing virus-specific T-cell responses provide an opportunity to monitor the impact of vaccine rollouts in the community. In this study, we assessed whether our recently developed SARS-CoV-2 whole-blood assay could be used effectively to analyse T-cell responses following vaccination. METHODS: Following a median of 15 days after the first dose of the ChAdOx1-S (AstraZeneca®) vaccine, peripheral blood was isolated from 58 participants. Blood was incubated overnight with an overlapping set of spike protein peptides and assessed for cytokine production using a cytometric bead array. RESULTS: The majority of vaccine recipients (51/58) generated a T helper 1 response (IFN-γ and/or IL-2) following a single dose of ChAdOx1-S. The magnitude of the IFN-γ and IL-2 response strongly correlated in vaccine recipients. While the production of other cytokines was evident in individuals who did not generate IFN-γ and IL-2, they showed no correlation in magnitude, nor did we see a correlation between sex or age and the magnitude of the response. CONCLUSIONS: The whole-blood cytokine assay provides a rapid approach to assessing T-cell immunity against SARS-CoV-2 in vaccine recipients. While the majority of participants generated a robust SARS-CoV-2-specific T-cell response following their first dose, some did not, demonstrating the likely importance of the booster dose in improving T-cell immunity.

5.
BMC Bioinformatics ; 22(1): 250, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33992077

RESUMEN

BACKGROUND: A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. RESULTS: In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways. CONCLUSIONS: This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genes Letales , ADN
6.
J Immunother Cancer ; 9(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33589524

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV), an oncogenic human gammaherpesvirus, is associated with a wide range of human malignancies of epithelial and B-cell origin. Recent studies have demonstrated promising safety and clinical efficacy of allogeneic 'off-the-shelf' virus-specific T-cell therapies for post-transplant viral complications. METHODS: Taking a clue from these studies, we developed a highly efficient EBV-specific T-cell expansion process using a replication-deficient AdE1-LMPpoly vector that specifically targets EBV-encoded nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2), expressed in latency II malignancies. RESULTS: These allogeneic EBV-specific T cells efficiently recognized human leukocyte antigen (HLA)-matched EBNA1-expressing and/or LMP1 and LMP2-expressing malignant cells and demonstrated therapeutic potential in a number of in vivo models, including EBV lymphomas that emerged spontaneously in humanized mice following EBV infection. Interestingly, we were able to override resistance to T-cell therapy in vivo using a 'restriction-switching' approach, through sequential infusion of two different allogeneic T-cell therapies restricted through different HLA alleles. Furthermore, we have shown that inhibition of the programmed cell death protein-1/programmed death-ligand 1 axis in combination with EBV-specific T-cell therapy significantly improved overall survival of tumor-bearing mice when compared with monotherapy. CONCLUSION: These findings suggest that restriction switching by sequential infusion of allogeneic T-cell therapies that target EBV through distinct HLA alleles may improve clinical response.


Asunto(s)
Infecciones por Virus de Epstein-Barr/terapia , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Linfoma/virología , Linfocitos T/trasplante , Proteínas de la Matriz Viral/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Infecciones por Virus de Epstein-Barr/inmunología , Femenino , Antígenos HLA , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfoma/inmunología , Linfoma/terapia , Ratones , Linfocitos T/inmunología , Trasplante Homólogo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Clin Transl Immunology ; 9(12): e1219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312565

RESUMEN

OBJECTIVES: There is emerging evidence that SARS-CoV-2-specific memory T-cell responses are likely to provide critical long-term protection against COVID-19. Strategies to rapidly assess T-cell responses are therefore likely to be important for assessing immunity in the global population. METHODS: Here, we have developed a rapid immune-monitoring strategy to assess virus-specific memory T-cell responses in the peripheral blood of COVID-19 convalescent individuals. We validated SARS-CoV-2-specific memory T-cell responses detected in whole blood using in vitro expansion with SARS-CoV-2 proteins. RESULTS: T-cell immunity characterised by the production of IFN-γ and IL-2 could be consistently detected in the whole blood of recovered participants. T cells predominantly recognised structural SARS-CoV-2 proteins. In vitro expansion demonstrated that while CD8+ T cells recognised nucleocapsid protein, spike protein and ORF3a, CD4+ T cells more broadly targeted multiple SARS-CoV-2 proteins. CONCLUSION: These observations provide a timely monitoring approach for identifying SARS-CoV-2 cellular immunity and may serve as a diagnostic for the stratification of risk in immunocompromised and other at-risk individuals.

8.
J Clin Invest ; 130(11): 6041-6053, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32750039

RESUMEN

BACKGROUNDThe recent failure of checkpoint-blockade therapies for glioblastoma multiforme (GBM) in late-phase clinical trials has directed interest toward adoptive cellular therapies (ACTs). In this open-label, first-in-human trial, we have assessed the safety and therapeutic potential of cytomegalovirus-specific (CMV-specific) ACT in an adjuvant setting for patients with primary GBM, with an ultimate goal to prevent or delay recurrence and prolong overall survival.METHODSTwenty-eight patients with primary GBM were recruited to this prospective study, 25 of whom were treated with in vitro-expanded autologous CMV-specific T cells. Participants were monitored for safety, progression-free survival, overall survival (OS), and immune reconstitution.RESULTSNo participants showed evidence of ACT-related toxicities. Of 25 evaluable participants, 10 were alive at the completion of follow-up, while 5 were disease free. Reconstitution of CMV-specific T cell immunity was evident and CMV-specific ACT may trigger a bystander effect leading to additional T cell responses to nonviral tumor-associated antigens through epitope spreading. Long-term follow-up of participants treated before recurrence showed significantly improved OS when compared with those who progressed before ACT (median 23 months, range 7-65 vs. median 14 months, range 5-19; P = 0.018). Gene expression analysis of the ACT products indicated that a favorable T cell gene signature was associated with improved long-term survival.CONCLUSIONData presented in this study demonstrate that CMV-specific ACT can be safely used as an adjuvant therapy for primary GBM and, if offered before recurrence, this therapy may improve OS of GBM patients.TRIAL REGISTRATIONanzctr.org.au: ACTRN12615000656538.FUNDINGPhilanthropic funding and the National Health and Medical Research Council (Australia).


Asunto(s)
Transfusión de Sangre Autóloga , Citomegalovirus/inmunología , Glioblastoma , Transfusión de Linfocitos , Linfocitos T/inmunología , Adulto , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tasa de Supervivencia
9.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32716518

RESUMEN

Cellular immunotherapeutics targeting the human papillomavirus (HPV)-16 E6 and E7 proteins have achieved limited success in HPV-positive oropharyngeal cancer (OPC). Here we have conducted proteome-wide profiling of HPV-16-specific T cell responses in a cohort of 66 patients with HPV-associated OPC and 22 healthy individuals. Unexpectedly, HPV-specific T cell responses from OPC patients were not constrained to the E6 and E7 antigens; they also recognized E1, E2, E4, E5, and L1 proteins as dominant targets for virus-specific CD8+ and CD4+ T cells. Multivariate analysis incorporating tumor staging, treatment status, and smoking history revealed that treatment status had the most significant impact on HPV-specific CD8+ and CD4+ T cell immunity. Specifically, the breadth and overall strength of HPV-specific T cell responses were significantly higher before the commencement of curative therapy than after therapy. These data provide the first glimpse of the overall human T cell response to HPV in a clinical setting and offer groundbreaking insight into future development of cellular immunotherapies for HPV-associated OPC patients.


Asunto(s)
Antígenos de Neoplasias/inmunología , Papillomavirus Humano 16/inmunología , Neoplasias Orofaríngeas/inmunología , Infecciones por Papillomavirus/inmunología , Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/virología
10.
Clin Transl Immunology ; 9(1): e01102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31956413

RESUMEN

OBJECTIVES: Cellular immunity against BK polyomavirus (BKV)-encoded antigens plays a crucial role in long-term protection against virus-associated pathogenesis in transplant recipients. However, in-depth understanding on dynamics of these cellular immune responses is required to develop better immune monitoring and immunotherapeutic strategies. METHODS: Here, we have conducted a proteome-wide analysis of BKV-specific T-cell responses in a cohort of 53 healthy individuals and 26 kidney transplant recipients to delineate the functional and transcriptional profile of these effector cells and compared these characteristics to T cells directed against cytomegalovirus, which is also known to cause significant morbidity in transplant recipients. RESULTS: Profiling of BKV-specific CD4+ and CD8+ T cells revealed that kidney transplant recipients with high levels of circulating viraemia showed significantly reduced T-cell reactivity against large T and/or small T antigens when compared to healthy donors. Interestingly, T cells specific for these antigens showed strong cross-recognition to orthologous JC virus (JCV) peptides, including those exhibiting varying degrees of sequence identity. Ex vivo functional and phenotypic characterisation revealed that the majority of BKV-specific T cells from renal transplant recipients expressed low levels of the key transcriptional regulators T-bet and eomesodermin, which was coincident with undetectable expression of granzyme B and perforin. However, in vitro stimulation of T cells with BKV epitopes selectively enhanced the expression of T-bet, granzyme B and cellular trafficking molecules (CCR4, CD49d and CD103) with minimal change in eomesodermin and perforin. CONCLUSIONS: These observations provide an important platform for the future development of immune monitoring and adoptive T-cell therapy strategies for BKV-associated diseases in transplant recipients, which may also be exploited for similar therapeutic value in JCV-associated clinical complications.

11.
Nat Commun ; 11(1): 499, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980649

RESUMEN

Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptores ErbB/metabolismo , Mutación/genética , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Humanos , Fosforilación , Pronóstico , Análisis de Supervivencia , Proteína Letal Asociada a bcl/metabolismo
12.
Br J Cancer ; 121(1): 37-50, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31133691

RESUMEN

BACKGROUND: Activating mutations in KRAS frequently occur in colorectal cancer (CRC) patients, leading to resistance to EGFR-targeted therapies. METHODS: To better understand the cellular reprogramming which occurs in mutant KRAS cells, we have undertaken a systems-level analysis of four CRC cell lines which express either wild type (wt) KRAS or the oncogenic KRASG13D allele (mtKRAS). RESULTS: RNAseq revealed that genes involved in ribosome biogenesis, mRNA translation and metabolism were significantly upregulated in mtKRAS cells. Consistent with the transcriptional data, protein synthesis and cell proliferation were significantly higher in the mtKRAS cells. Targeted metabolomics analysis also confirmed the metabolic reprogramming in mtKRAS cells. Interestingly, mtKRAS cells were highly transcriptionally responsive to EGFR activation by TGFα stimulation, which was associated with an unexpected downregulation of genes involved in a range of anabolic processes. While TGFα treatment strongly activated protein synthesis in wtKRAS cells, protein synthesis was not activated above basal levels in the TGFα-treated mtKRAS cells. This was likely due to the defective activation of the mTORC1 and other pathways by TGFα in mtKRAS cells, which was associated with impaired activation of PKB signalling and a transient induction of AMPK signalling. CONCLUSIONS: We have found that mtKRAS cells are substantially rewired at the transcriptional, translational and metabolic levels and that this rewiring may reveal new vulnerabilities in oncogenic KRAS CRC cells that could be exploited in future.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transcripción Genética , Proteínas Quinasas Activadas por AMP/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Receptores ErbB/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Metabolómica , Ribosomas/fisiología , Transducción de Señal , Factor de Crecimiento Transformador alfa/farmacología
13.
Trends Mol Med ; 25(7): 595-611, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31078431

RESUMEN

Breast cancer is the most common cancer among women globally. Genomic instability (GI) refers to the increased tendency to accrue genomic alterations. It drives heterogeneity and is a hallmark of cancer. Genomic integrity is closely guarded by several mechanisms, including DNA damage checkpoints, the DNA repair machinery, and the mitotic checkpoint. Alterations in these surveillance mechanisms cause GI. In breast cancer, several pathways maintaining genomic integrity are distinctly altered, including some that have been successfully exploited for therapeutic targeting. In this review, we comprehensively discuss the recent advances on the mechanisms of GI in breast cancer, highlighting DNA repair defects and chromosome segregation errors during mitosis. We further review the clinical implications and therapeutic potential of targeting GI in the era of precision medicine.


Asunto(s)
Neoplasias de la Mama/etiología , Predisposición Genética a la Enfermedad , Variación Genética , Inestabilidad Genómica , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Inestabilidad Cromosómica , Daño del ADN , Progresión de la Enfermedad , Femenino , Estudios de Asociación Genética , Humanos , Terapia Molecular Dirigida
14.
J Exp Clin Cancer Res ; 38(1): 85, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777101

RESUMEN

BACKGROUND: Despite the increasing progress in targeted and immune based-directed therapies for other solid organ malignancies, currently there is no targeted therapy available for TNBCs. A number of mechanisms have been reported both in pre-clinical and clinical settings that involve inherent, acquired and adaptive resistance to small molecule inhibitors. Here, we demonstrated a novel resistance mechanism in TNBC cells mediated by PDGFRß in response to JAK2 inhibition. METHODS: Multiple in vitro (subG1, western blotting, immunofluorescence, RT-PCR, Immunoprecipitation), in vivo and publically available datasets were used. RESULTS: We showed that TNBC cells exposed to MEK1/2-JAK2 inhibitors exhibit resistant colonies in anchorage-independent growth assays. Moreover, cells treated with various small molecule inhibitors including JAK2 promote PDGFRß upregulation. Using publically available databases, we showed that patients expressing high PDGFRß or its ligand PDGFB exhibit poor relapse-free survival upon chemotherapeutic treatment. Mechanistically we found that JAK2 expression controls steady state levels of PDGFRß. Thus, co-blockade of PDGFRß with JAK2 and MEK1/2 inhibitors completely eradicated resistant colonies in vitro. We found that triple-combined treatment had a significant impact on CD44+/CD24- stem-cell-like cells. Likewise, we found a significant tumor growth inhibition in vivo through intratumoral CD8+ T cells infiltration in a manner that is reversed by anti-CD8 antibody treatment. CONCLUSION: These findings reveal a novel regulatory role of JAK2-mediated PDGFRß proteolysis and provide an example of a PDGFRß-mediated resistance mechanism upon specific target inhibition in TNBC.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Resistencia a Antineoplásicos/fisiología , Janus Quinasa 2/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Femenino , Humanos , Inhibidores de las Cinasas Janus/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo
15.
Trends Pharmacol Sci ; 40(3): 198-211, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30736983

RESUMEN

Breast cancer is one of the most common cancers affecting women. Despite significant improvements in overall survival, it remains a significant cause of death worldwide. Genomic instability (GI) is a hallmark of cancer and plays a pivotal role in breast cancer development and progression. In the past decade, high-throughput technologies have provided a wealth of information that has facilitated the identification of a diverse repertoire of mutated genes and mutational processes operative across cancers. Here, we review recent findings on genomic alterations and mutational processes in breast cancer pathogenesis. Most importantly, we summarize the clinical challenges and opportunities to utilize omics-based signatures for better management of breast cancer patients and treatment decision-making.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Inestabilidad Genómica , Humanos
16.
Genomics ; 111(6): 1483-1492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312661

RESUMEN

Protein complexes play a dominant role in cellular organization and function. Prediction of protein complexes from the network of physical interactions between proteins (PPI networks) has thus become one of the important research areas. Recently, many computational approaches have been developed to identify these complexes. Various performance assessment measures have been proposed for evaluating the efficiency of these methods. However, there are many inconsistencies in the definitions and usage of the measures across the literature. To address this issue, we have gathered and presented the most important performance evaluation measures and developed a tool, named CompEvaluator, to critically assess the protein complex prediction methods. The tool and documentation are publicly available at https://sourceforge.net/projects/compevaluator/files/.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Modelos Teóricos , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Animales , Estudios de Evaluación como Asunto , Humanos , Unión Proteica , Proteínas/química
17.
Mol Omics ; 14(5): 320-329, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30215656

RESUMEN

INTRODUCTION: The prostate exhibits a unique metabolism that changes during initial neoplasia to aggressive prostate cancer (PCa) and metastasis. The study of PCa metabolism thus represents a new avenue for diagnostics, particularly early diagnosis of aggressive PCa cases. RESULTS: Here, by clustering tissue transcriptomics data from The Cancer Genome Atlas (498 PCa patients), we identified six metabolic subgroups (C1-C6) of PCa that show distinct disease-free survival (DFS) outcomes (p < 0.0001). In particular, we identified at least two subgroups (C5 & C3) that exhibit significant poor prognosis (∼70% and 30-40% relapse within the first 72 months; hazards ratios of 9.4 and 4.4, respectively, relative to the best prognosis cluster C4 that showed <20% relapse even by 120 months). We were able to reproduce the subgroups in several independent datasets including B. S. Taylor et al. (2010) data; 215 patients; DFS p = 0.00088) using a multinomial regression classifier. The subgroups displayed distinct metabolic profiles vis-à-vis normal tissues, measured as 'deregulation' observed for 20 metabolic pathways (using Pathifier; Y. Drier and E. Domany, 2013). In particular, C5 and C3 showed considerable deregulation for pathways involved in synthesis and catabolism of complex forms of lipids and carbohydrates, and these were exhibited in parallel or in the face of glycolysis, a common form of energy production in cancer cells. The subgroups were significantly over-enriched for different sets of genetic alterations [BRCA1, MSH2, FOXA1, TP53 (C5), RB1 and STK11(C3); and AR (C1); p ≤ 8.6 × 10-4], suggesting that distinct sets of alterations underpinning the PCa subgroups that 'push' the subgroups towards their unique metabolic profiles. Finally, applying the classifier to blood protein expression profiles from 42 active surveillance (AS) and 65 advanced castrate resistant PCa (ACRPC) patients (D. Olmos et al., 2012) assigned 70.77% ACPRC and interestingly reassigned 59.52% AS patients to at least one of the poor prognosis subgroups with 35.71% to the metabolically active poor-prognosis subgroup C3. CONCLUSION: The identification of PCa subgroups displaying distinct clinical outcomes solely from metabolic expression profiles of PCa tumours reiterates the significant link between deregulated metabolism and PCa outcomes (E. Eidelman et al., 2017). On the other hand, the time to biochemical relapse (rise in PSA levels) was not indicative of early relapse seen for subgroups C3 and C5 (these show considerably late BCR compared to C4). Our study thus highlights specific processes (elevated lipid and carbohydrate metabolism pathways) that could be better indicators than PSA for early diagnosis of aggressive PCa. AVAILABILITY: https://maxwellplus.com/research/metabolic-deregulation-in-prostate-cancer/.


Asunto(s)
Metabolismo Energético/genética , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/metabolismo , Transcriptoma/genética , Análisis por Conglomerados , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Glucólisis/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Redes y Vías Metabólicas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Riesgo
18.
EMBO Mol Med ; 10(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30108112

RESUMEN

The centrosomal protein, CEP55, is a key regulator of cytokinesis, and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/cyclin B activation and CDK1 caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.


Asunto(s)
Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Mitosis , Proteínas Nucleares/metabolismo , Neoplasias de la Mama/patología , Proteína Quinasa CDC2/metabolismo , Caspasas/metabolismo , Proteínas de Ciclo Celular/genética , Muerte Celular , Línea Celular Tumoral , Ciclina B/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Modelos Biológicos , Proteínas Nucleares/genética
20.
Mol Oncol ; 11(5): 470-490, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28173629

RESUMEN

Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.


Asunto(s)
Neoplasias Colorrectales/genética , Recombinación Homóloga , Proteínas Proto-Oncogénicas p21(ras)/genética , Recombinasa Rad51/genética , Saccharomyces cerevisiae/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Roturas del ADN de Doble Cadena , Daño del ADN , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Células HCT116 , Humanos , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ARN Interferente Pequeño/genética , Recombinasa Rad51/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...